人工智能基础之深度学习(全20讲)【理工学社】

54人 购买 好评度 -
用手机看

扫一扫继续用手机看

  • 微信扫码

  • QQ扫码

下载手机APP
收藏
  • 基础一班
更多班级

基础一班

支持随到随学,23年08月过期

¥82.22

本班因教学质量问题暂时不能报名。 查看详情

课程因违反平台规定暂时不能报名。

立即购买

课程概述

目录

评论

老师介绍

  • 王教授

    王教授

    大学老教授,从事科研教学工作 参加过国家自然科学基金项目 擅长解决数学物理方面的难题 重视基础教学工作 能够从本质上上剖解问题
简  介 深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。
深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。 [1]  深度学习的概念由Hinton等人于2006年提出。基于深度置信网络(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。 [1]  深度学习是机器学习中一种基于对数据进行表征学习的方法。观测值(例如一幅图像)可以使用多种方式来表示,如每个像素强度值的向量,或者更抽象地表示成一系列边、特定形状的区域等。而使用某些特定的表示方法更容易从实例中学习任务(例如,人脸识别或面部表情识别)。深度学习的好处是用非监督式或半监督式的特征学习和分层特征提取高效算法来替代手工获取特征。 深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。 [2]  同机器学习方法一样,深度机器学习方法也有监督学习与无监督学习之分.不同的学习框架下建立的学习模型很是不同.例如,卷积神经网络(Convolutional neural networks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(Deep Belief Nets,简称DBNs)就是一种无监督学习下的机器学习模型。

* 课程提供者:理工学社

老师还为你推荐了以下几门课程