赵强老师:大数据系列课程(20)Spark RDD

5人 购买 好评度 -
用手机看

扫一扫继续用手机看

  • 微信扫码

  • QQ扫码

下载手机APP
收藏
  • 大数据系列课程
  • 大数据系列课程
更多班级

大数据系列课程

支持随到随学,24年12月过期

大数据系列课程

支持随到随学,24年10月过期

¥597.22

¥597.22

本班因教学质量问题暂时不能报名。 查看详情

课程因违反平台规定暂时不能报名。

立即购买

课程概述

目录

往期学员作业()

评论

老师介绍

  • 赵强老师

    赵强老师

    赵强老师,清华大学软件工程专业毕业。京东大学大数据学院院长,Oracle(中国)高级技术顾问。精通大数据、Oracle数据库、NoSQL数据库,以及中间件技术
简  介 本系列课程将基于RedHat Linux 7.4版本、Hadoop 2.7.3、Spark 2 版本全面介绍大数据的整体内容,让学员深入理解并掌握运行机制和原理,从而进一步掌握大数据的相关内容。


Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎。Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行框架,Spark,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是——Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。
Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。
Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。

* 课程提供者:赵强